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We study two methods for constructing a nonuniform embedding for multivariate data. A nonuniform
embedding is a state space reconstruction which is more flexible than the common delay coordinates with fixed
delays since it contains variable delays. Using these methods, we can extract causal relationships among many
variables in a more suitable way. We demonstrate that the proposed methods can give more precise predictions
and simpler models than some previous methods.
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Multivariate time series are ubiquitous in the fields of
science, technology, and economics. Typical examples in-
clude multichannel recordings of the brain, weather forecast-
ing, genetic networks, food chains, robotics, and prices of
stocks and economic indexes. In these areas of research, a
major interest is to infer some relations among many vari-
ables.

In a nonlinear time series analysis for a scalar time
series, the story often starts from an embedding: the recon-
struction of a state space from observed data. The history of
embedding dates back to 1980, when Packard et al. �1�
proposed the method of “delay coordinates” and Takens �2�
gave it theoretical support. Given a scalar time series
�x�t��t=1

N , the delay coordinates are defined as �x�t� ,
x�t−�� , . . . ,x(t− �d−1��)�, where � is called the lag, and d
the embedding dimension. The delay coordinates will be later
called a uniform embedding for the sake of comparison. Ac-
cording to Takens’s theorem �2�, if d is bigger than twice the
dimension of the original dynamical system, the delay coor-
dinates produce an embedding, a faithful representation of
the original state. Later Sauer et al. �3� showed that the
method of delays preserves the box-counting dimension.
Stark and co-workers extended Takens’s theorem toward
forced and stochastic systems �4–6�. In practice Cellucci
et al. �7� recently argued that � and d are best identified from
a scalar time series using the first minimum of the mutual
information �8� and false nearest neighbors �9�, respectively.

Although it is effective when a time series has a single
dominant frequency, a uniform embedding does not work
well when a time series has multiple strong periodicities with
different time scales �10�. A uniform embedding fails be-
cause a lag cannot be optimal for both short and long time
scales. A time series that possesses multiple strong periodici-
ties is, for example, that of wind velocity. A solution for
multiple periodicities is “nonuniform embeddings” �10�. By
choosing a lag vector ��1 ,�2 , . . . ,�k�, we define a nonuniform
embedding as (x�t−�1� ,x�t−�2� , . . . ,x�t−�k�), where k is the
number of lags and �i�� j if i� j. A nonuniform embedding
can deal with several time scales simultaneously because
short lags describe short-time-scale dynamics while long lags

capture the dynamics of long time scales. Some methods for
constructing a nonuniform embedding for a scalar time series
have been proposed �10–14�. Nonuniform embeddings are
useful for better description of phenomena since short and
long periodicities can be dealt with together �10,13� and
more precise prediction �12� is possible.

In the case of multivariate time series, it is often the case
that a time series contains multiple periodicities. There are
also some proposed methods for finding uniform embeddings
�15,16�. As for nonuniform embeddings, Garcia and Almeida
�17� proposed an algorithm that further extends their exten-
sion �14� of false nearest neighbors �9�, a standard practical
method for finding a uniform embedding for a scalar time
series.

In this paper, we examine two effective methods for con-
structing a nonuniform embedding given a multivariate time
series. One is an extension of the method of Judd and Mees
�10�, the other is a different technique that we call cross
validation. These will help provide not only better predic-
tions but also more convenient descriptions.

Before we start describing its extension, we briefly sum-
marize the method of Judd and Mees �10�, which finds a
nonuniform embedding from a scalar time series.

Let N be the number of observations in a time series.
Suppose that there is a scalar time series �x�t��t=1

N given. Then
a standard linear autoregressive model has the following
form:

x�t� = a0 + �
�=1

w

a�x�t − �� + �t. �1�

This can be considered as a linear model for a uniform em-
bedding of dimension w and a unit lag.

We may want to choose the lag vector optimally and re-
move the terms that do not contribute significantly. Assume
that we have a lag vector ��1 ,�2 , . . . ,�k� where �k�w. Then
a reduced autoregressive linear model has the following
form:

x�t� = a0 + �
j=1

k

ajx�t − � j� + �t. �2�
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For selecting an optimal set of lags, Judd and Mees �10�
used the minimum description length �18�. The description
length is a tool for changing the approximation errors and the
size of the model into a single criterion so that we can find an
optimal tradeoff between the approximation errors and the
model size. First we regard terms �x�t−�� :�=1, . . . ,w� as
candidate basis functions for linear approximation. Then we
minimize the description length and declare a set of basis
functions giving the minimum as the optimal set.

In a similar way to Judd and Mees �10�, we define a
method for finding a nonuniform embedding from a multi-
variate time series. First we define a multivariate reduced
autoregressive linear model. Suppose hereafter that a
multivariate time series �x�t��t=1

N is given, where
x�t�= (x1�t� , . . . ,xD�t�) is defined to be a vector of all D ob-
servables at time t. Then a multivariate reduced autoregres-
sive linear model for the ith observable has the following
form:

xi�t� = a0 + �
j=1

k

ajxij
�t − � j� + �t, �3�

where k is the number of delays and ij is the index of the
observable for the jth delay; thus it takes an integer value
between 1 and D. In this model, the set of candidate basis
functions is �xi�t−�� : i=1, . . . ,D ;�=1, . . . ,w� and the set of
chosen basis functions is �xij

�t−� j� : j=1, . . . ,k�. To obtain a
reduced model, we need to find a set of basis functions that
best describes the given time series. Instead of the descrip-
tion length, here we use the normalized maximum likelihood
�19�, a variant of the description length, for the information
criterion. The normalized maximum likelihood is defined as
follows. Suppose that there are a number K of candidate
basis functions �f j : j�F�, where F= �1,2 , . . . ,K� is the
set of indices for all the candidates. Let vt be a vector
(x1�t−1� ,x1�t−2� , . . . ,x1�t−w� ,x2�t−1� , . . . ,xD�t−w�). For a
set of indices B= �j1 , . . . , jk��F, define

VB =�
f j1

�vw+1� f j2
�vw+1� ¯ f jk

�vw+1�

] ]

f j1
�vt� f j2

�vt� ¯ f jk
�vt�

] ]

f j1
�vN� f j2

�vN� ¯ f jk
�vN�

	 , �4�

� = „xi�w + 1�, . . . ,xi�t�, . . . ,xi�N�…T, �5�

�B = �a1,a2, . . . ,ak�T, �6�

where the superscript T indicates transposition. Then the pre-
diction error eB can be written as eB=�−VB�B. By minimiz-
ing the squares eB

TeB of the prediction errors over �B, we

obtain the estimate �̂B of �B as

�̂B = �VB
TVB�−1VB

T� . �7�

Then the mean square �̂B of the errors is

�B̂ = �� − VB�̂B�T�� − VB�̂B�/Ñ , �8�

where Ñ=N−w. We also define

R̂B = �VB�̂B�TVB�̂B/Ñ . �9�

Then the normalized maximum likelihood �L� �19� for k ba-
sis functions �f j : j�B� is defined as

L�B� =
Ñ − w

2
ln �B̂ +

w

2
ln R̂B − ln �
 Ñ − w

2
� − ln �
w

2
�

− ln w ,

where � is the Gamma function. Nakamura et al. �20� con-
cluded that the normalized maximum likelihood is most
likely to choose the correct model among other model selec-
tion criteria.

Using the normalized maximum likelihood and the algo-
rithm of Judd and Mees �21�, we define an algorithm for
selecting an optimal set of delays as follows. Let V be a
matrix each row of which is a set of all candidate basis
functions, or delays, all at the same instant t, namely,

V = VF =�
f1�vw+1� f2�vw+1� ¯ fK�vw+1�

] ]

f1�vt� f2�vt� ¯ fK�vt�
] ]

f1�vN� f2�vN� ¯ fK�vN�
	 . �10�

�1� Normalize V so that each column has unit length.
�2� Let B and B� be empty sets.
�3� Let the prediction error eB�=� if B� is empty and

eB�=�−VB��̂B� otherwise. The best estimate �̂B� for a set B�
of basis functions can be calculated by Eq. �7�. Then each
component of 	=VTeB� shows how closely the correspond-
ing basis function matches the residual eB�.

�4� Find the candidate basis function fp that matches best.
Let p�F be the index for the largest component in 	. Set
B�←B�� �p�.

�5� Find the basis function fq that contributes least. Let

q�B� be the index whose element of �̂B� is the smallest
absolute value. If p�q, then B�←B� \ �q� and go to step 3.

�6� If B is empty or L�B���L�B�, then set B←B� and go
to step 3.

�7� Declare that B is the best combination of basis func-
tions.

When we have many candidate delays, we may not be
able to handle them at once. In such a case, we change the
above algorithm in the following way. Divide F into small
groups Fl �l=1,2 , . . . ,L�. For example, in the following nu-
merical simulations, we set Fl as a set of indices for basis
functions �xl�t−1� ,xl�t−2� , . . . ,xl�t−w��.

�1� Let B be an empty set.
�2� For l=1 to L, apply the above algorithm using B�Fl

as the set of indices for candidate basis functions and replace
B with the chosen basis functions.

�3� Declare that B is the best combination of basis func-
tions.

HIRATA, SUZUKI, AND AIHARA PHYSICAL REVIEW E 74, 026202 �2006�

026202-2



The second method we propose is cross validation. Given
a multivariate time series �(x1�t� ,x2�t� , . . . ,xD�t�)�t=1

N , we ran-
domly select the number M1 of points for modeling, and the
number M2 of points for evaluation from the remaining
points. For a given nonuniform embedding defined by a set
of delays G= (xi1

�t−�1� ,xi2
�t−�2� , . . . ,xik

�t−�k)�, we can fit a
radial basis function model with the points for modeling us-
ing the algorithm of Judd and Mees �21� with the normalized
maximum likelihood as the information criterion, and evalu-
ate the prediction error E�G� using the points for evaluation.
Here the centers of the radial basis functions are chosen as
prescribed in Ref. �21�, namely, from the points for model-
ing, embedded in that space, added to a Gaussian distribution
of mean 0 and standard deviation 0.3 times the standard de-
viation of the given data. We use the root mean square error
for the prediction error. Therefore, we minimize the predic-
tion error over nonuniform embeddings to find the best non-
uniform embedding. We may minimize E�G� using the ge-
netic algorithm �22�. However, we found that the following
deterministic algorithm relatively works well.

�1� Let H be the set of all possible delays.
�2� Let G be an empty set.
�3� Find h�H \G that minimizes E�G� �h��.
�4� If E�G� �h���E�G�, then G←G� �h� and go to step

3.
�5� Declare that G is a set of delays that yields a good

nonuniform embedding.
The possible delays may be decided from our belief

about how far past observables can influence the future.
In this paper, we choose the maximum delay w and prepare
all the possible delays for each coordinate, i.e., the set
�xi�t−�� : i=1,2 , . . . ,D ;�=1,2 , . . . ,w�. In practice, by test-
ing a case with a longer maximum delay, we may be able to
ensure that the chosen maximum delay is large enough.

We call this algorithm the greedy algorithm. In this paper,
we use M1=1000 and M2=1000.

We applied the above two algorithms to artificial data. For
the comparisons of their performances, we have three alter-
native methods: those of Boccaletti et al. �16�, Cao, Mees,
and Judd �15�, and Garcia and Almeida �17�. While the pro-

posed methods choose a set of delays for each observable,
the method of Boccaletti et al. �16� reconstructs a vector of
delays that corresponds to each original state of the entire
system with uniform delays. The method of Cao et al. �15�
builds single states for each observable with uniform delays.
The method of Garcia and Almeida �17� finds single states
for the entire system with nonuniform delays. However, we
only use the methods of Boccaletti et al. �16� and Garcia and
Almeida �17� since the method of Cao, Mees, and Judd �15�
soon suffers from combinatorial explosions.

We applied these methods to data of coupled Rössler sys-
tems, which were used by Boccaletti et al. �16�. We used the
coupling strength 
=0.05. We observed x1 and x2 every
0.05 unit time to obtain a time series �(x1�t� ,x2�t�)�t=1

10 000 of
length 10 000. Then we made a model that predicts x1�t�
from the two observables up to time �t−1�. We used the first
9500 points for modeling and the remaining 500 points for
calculating the root mean square error. For the two proposed
methods and that of Garcia and Almeida �17�, we considered
maximum delays of 50 for each observable.

The results are summarized in Tables I and II. The method
that gave the best prediction error was the cross validation,
followed by the method of Garcia and Almeida. The predic-
tion error for the extension of the method of Judd and Mees
is comparable to that of Garcia and Almeida.

We compared the computation time required for finding
the reconstructions in Table III. The extension of the method
of Judd and Mees is the fastest and the cross validation is the
second slowest. The method of Garcia and Almeida is the
slowest even if we use the efficient box-assisted method for
finding neighbors given in Ref. �23�. Calculating the nearest
neighbors seems a bottleneck.

We also compared these methods with data from the Lo-
renz96 I model �24,25�. This model is a toy model of the
atmosphere, which is defined as

TABLE I. Chosen delays for coupled Rössler systems.

Method Chosen delays

Boccaletti et al. x1�t−1�, x1�t−32�, x1�t−63�,
x2�t−1�, x2�t−31�, x2�t−61�

Extension of Judd and Mees x1�t−1�, x1�t−12�, x1�t−22�,
x1�t−50�, x2�t−1�, x2�t−8�,

x2�t−22�, x2�t−32�, x2�t−50�
Cross validation x1�t−1�, x1�t−3�, x1�t−9�

Garcia and Almeida x1�t−1�, x1�t−2�, x1�t−3�,
x1�t−4�, x1�t−5�, x1�t−6�,
x1�t−7�, x1�t−8�, x1�t−12�,
x2�t−1�, x2�t−2�, x2�t−3�,
x2�t−4�, x2�t−5�, x2�t−6�,

x2�t−7�

TABLE II. Root mean square error �RMSE� for coupled Rössler
systems.

Method RMSE

Boccaletti et al. 0.1073±0.0050

Extension of Judd and Mees 0.0451±0.0110

Cross validation 0.0018±0.0022

Garcia and Almeida 0.0377±0.0196

TABLE III. Computation time required for finding the recon-
structions for coupled Rössler systems.

Method Computation time �s�

Boccaletti et al. 143.86

Extension of Judd and Mees 0.84

Cross validation 1385.1

Garcia and Almeida 37486.0
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dzi

dt
= zi−1�zi+1 − zi−2� − zi + F �11�

for i=1, . . . ,n, where we used a periodic boundary condition
zi−n=zi+n=zi and the parameters n=10 and F=8. We ob-
served all the variables every 0.05 unit time and generated a
time series �(z1�t� ,z2�t� , . . . ,z10�t�)�t=1

10 000 of length 10 000.
We used the first 9500 points for modeling and the remaining
points for evaluating the prediction. We made a model that
predicts z1�t� using the previous observations up to time
�t−1�. For the proposed methods, we used the maximum
delay of 10. For the analysis for the Lorenz96 I model, we do
not use the method of Garcia and Almeida because it is too
time consuming.

The results are summarized in Tables IV and V. In this
example, the two proposed methods have smaller prediction
errors than that of Boccaletti et al. �16�.

We also tested the robustness of the methods against
noise. We added 5% Gaussian observation noise to the data
of the Lorenz96 I model. We found the reconstructions and
the predictive models from the noisy data and evaluated the
prediction errors using the clean data.

We show the results in Tables VI and VII. The method of
Boccaletti et al. is robust in the sense that the performance
did not get worse even in the noisy case. The prediction
error of the cross validation doubled. But still the two pro-
posed methods enjoy smaller prediction errors than that of
Boccaletti et al.

This example shows that even under noisy cases, the pro-
posed methods work better.

The proposed methods can give not only better prediction

but also better description. Since they provide delays that
are specific to an observable, we can find causal relations
among observables. The other methods mentioned in this
paper cannot do this. The methods for finding a uniform
embedding such as those of Cao et al. �15� and Boccaletti
et al. �16� cannot find an optimal delay. The methods that try
to reconstruct single states for the entire system such as that
of Boccaletti et al. �16� and that of Garcia and Almeida �17�
cannot describe the relations among observables.

We applied the extension of the method of Judd and Mees
to wind data to extract some causal relationships behind
them. The wind data we use here were recorded every
10 min at 160 points in Hokkaido, the northern island in
Japan, for a month in July 2003. The wind data at each point
were originally recorded using the velocity and direction.
However, we converted the format into that of the east and
north wind by taking projections. Thus each point has two
variates.

We picked the point shown with a circle in Fig. 1 and
tried to find the delays up to time �t−1� that have some effect
on the east wind at that point at time t. Here the maximum
delay is 36. Since there were 160 points and each point has
two variates, a total of 11 520 candidate delays were pre-
pared. We ordered the points so that points closer to the one
with the circle appear earlier in the list. The result is shown
in Fig. 1. Many delays of points that are located to the south-
west were selected. The westerlies might be related to these
delays. Judging from the magnitude of the delays, the delay
selected at �143.8,43.4� is not a direct effect. This point and

TABLE IV. Chosen delays for Lorenz96 I model.

Method Chosen delays

Boccaletti et al. z1�t−1�, z2�t−1�, z3�t−1�,
z4�t−1�, z5�t−1�, z6�t−1�,
z7�t−1�, z8�t−1�, z9�t−1�,

z10�t−1�
Extension of Judd and Mees z1�t−1�, z1�t−3�, z1�t−5�,

z1�t−7�,z1�t−9�, z2�t−1�,
z2�t−4�, z7�t−4�,z8�t−9�,

z9�t−1�, z9�t−10�, z10�t−2�,
z10�t−3�, z10�t−5�, z10�t−6�,

z10�t−7�, z10�t−10�
Cross validation z1�t−1�, z1�t−2�, z1�t−3�,

z1�t−5�

TABLE V. Root mean square errors for Lorenz96 I model.

Method RMSE

Boccaletti et al. 0.5285±0.0280

Extension of Judd and Mees 0.2221±0.0040

Cross validation 0.1064±0.0013

TABLE VI. Chosen delays from noisy data generated from Lo-
renz96 I model.

Method Chosen delays

Boccaletti et al. z1�t−1�, z2�t−1�, z3�t−1�,
z4�t−1�, z5�t−1�, z6�t−1�,
z7�t−1�, z8�t−1�, z9�t−1�,

z10�t−1�
Extension of Judd and Mees z1�t−1�, z1�t−3�, z1�t−5�,

z1�t−8�,z2�t−3�, z2�t−6�,
z3�t−1�, z3�t−3�, z3�t−6�,
z4�t−1�, z4�t−3�, z4�t−7�,
z4�t−10�, z8�t−1�, z8�t−9�,
z9�t−1�, z9�t−3�, z9�t−10�,

z10�t−1�, z10�t−4�
Cross validation z1�t−1�, z1�t−2�, z2�t−4�,

z9�t−1�, z10�t−1�,

TABLE VII. Prediction errors for noisy data generated from
Lorenz96 I model.

Method RMSE

Boccaletti et al. 0.5254±0.0333

Extension of Judd and Mees 0.2655±0.0040

Cross validation 0.2269±0.0109
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the predicted point may have the same driving force, such as
the winds from the sea and land that occur daily. We also
used the cross validation for the same data set with the same
maximum delay. The result is shown in Fig. 2. The selected
delays are different from those of Fig. 1. This means that
similar information can be obtained from other observables.
The results for the univariate cases are shown in Table VIII.
In the univariate cases, we only used the delays correspond-
ing to the east wind at the point with the circle in Figs. 1 and
2. These residuals are compared in Table IX. The multivari-
ate cases yielded smaller residuals and thus could better ex-
plain the causal relationships of the data set. This is not the
result of overfitting since the normalized maximum likeli-
hood avoids it by penalizing the number of parameters.

We learned that recently Pecora and Moniz �26� proposed
a method for finding a delay embedding from multivariate
data. Their method and our methods are not mutually exclu-
sive and we can enjoy benefits from both. If we use first the
method of Pecora and Moniz and second one of our pro-

posed methods, then we can initially have a delay embedding
and reduce the number of candidate delays using one of our
methods. In this case, our methods will be demanded since
things are complicated in a network and it is worth picking
up only delays that are related to each coordinate. The sec-
ond approach is to first apply one of our methods and reduce
the number of candidate delays and then use the method of
Pecora and Moniz. This permutation works well especially if
their method takes a long time when the number of candidate
delays is huge.

In conclusion, we evaluated two algorithms for choosing
a nonuniform embedding given a multivariate time series.
The first method is an extension of the method of Judd and
Mees �10�, where we considered multivariate reduced autore-
gressive models and selected the best set of delays by mini-
mizing the normalized maximum likelihood �19�, a variant of
the description length. The second method is cross valida-
tion. We minimized the prediction error over all candidates
for nonuniform embeddings. Using examples, we demon-
strated that the proposed methods can find causal relation-
ships among many variables of multivariate data. We also
showed that using nonuniform embeddings these methods do
better in prediction than uniform embeddings constructed us-
ing the method of Boccaletti et al. �16�. The proposed algo-
rithms showed better performance than the method of Garcia
and Almeida �17�. If we look for accuracy of prediction, we
should choose the cross validation, while we should use the
extension of the method of Judd and Mees if we want to find
a nonuniform embedding within a short time. We also would
like to point out here that it is better to reconstruct states for
each variable for the following three reasons: we may be able
to divide a system into small subsystems by using states
reconstructed for each observable; we can enjoy simpler ex-
pressions since some variables are not necessary for describ-
ing other variables; we can see causal relations among vari-
ables. These points are quite important when dealing with
complicated systems such as genetic networks, weather fore-
casting, and the brain since many variables are involved
therein.

TABLE VIII. Chosen delays from the wind data. These delays
were for the east wind at the point with a circle in Figs. 1 and 2.

Method Chosen delays

Extension of Judd and Mees, univariate 1, 3, 5, 12

Cross-validation, univariate 1, 5, 18, 33

TABLE IX. Residuals in root mean square error after fitting the
wind data.

Method Residual

Extension of Judd and Mees, univariate 0.6371±0.0011

Extension of Judd and Mees, multivariate 0.6152±0.0018

Cross validation, univariate 0.6412±0.0018

Cross validation, multivariate 0.6346±0.0018

FIG. 1. �Color online� Delays for predicting the east wind
at the point with a circle obtained using the extension of the
method of Judd and Mees. The dots show points of observation.
Symbol +��� shows points whose east �north� wind helps to predict
the east wind at the point with a circle. The numbers shown are the
magnitudes of the delays. For example, the number 1 means
10 min.

FIG. 2. �Color online� Delays for predicting east wind at the
point with a circle obtained using cross validation. The dots show
points of observation. Symbol +��� shows points whose east
�north� wind helps to predict the east wind at the point with a circle.
The numbers shown are the magnitudes of the delays. For example,
the number 1 means 10 min.
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